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Abstract. We study the ABC model in the cyclic competition (A+B → 2B, B+C → 2C, C+A → 2A) and
the neutral drift (A+B → 2B or 2A, B+C → 2C or 2B, C +A → 2A or 2C) versions, with mutations and
migrations introduced into the model. When stochastic phenomena are taken into account, there are three
distinct regimes in the model. (i) In the “fixation” regime, the first extinction time scales with the system
size N and has an exponential distribution, with an exponent that depends on the mutation/migration
probability per particle µ. (ii) In the “diversity” regime, the order parameter remains nonzero for very
long times, and becomes zero only rarely, almost never for large system sizes. (iii) In the critical regime,
the first passage time for crossing the boundary (one of the populations becoming zero) has a power law
distribution with exponent −1. The critical mutation/migration probability scales with system size as N−1.
The transition corresponds to a crossover from diffusive behaviour to Gaussian fluctuations about a stable
solution. The analytical results are checked against computer simulations of the model.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 82.39.Rt Reactions in complex
biological systems – 64.60.Cn Order-disorder transformations; statistical mechanics of model systems

1 Introduction

Cyclic phenomena play a very important role in different
classes of processes in nature, particularly in epidemiologi-
cal and ecological systems. In the epidemiological context,
examples are diseases which do not leave us with perma-
nent immunity [1,2]. In ecology, cases when three variants
of a species compete with one-another in a cyclic fashion
have been observed [3–6]. Another system of interest are
cyclic food webs. Recently, Kerr et al. obtained labora-
tory results for a system of three competing species that
play rock-paper-scissors, when placed in a lattice-like spa-
tial structure, and showed that there is agreement of the
simulation results to the laboratory ones [7]. Its alterna-
tive, as far as evolutionary processes are concerned, is the
famous Kimura-Weiss model of neutral genetic drift [8,9].

In a previous article [10] we have considered a non-
spatial version of the ABC model in both the cyclic com-
petition and neutral genetic drift versions, and studied the
evolutionary time behaviour of such a model. The num-
ber of the A, B, C species oscillates with an amplitude that
drifts with time, until one of the species (and then the sec-
ond one) goes extinct, i.e. biodiversity is lost. The number
of survivors vs. time plots show an exponential decay. It is
very interesting to note that there is no difference in the
extinction time scale for the ensemble of competing species
and the case of neutral drift. This allows us to think of
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the neutral model as an “adiabatic approximation” of the
cyclic system. Considering that the cyclic competition sys-
tem would be a minimal model (three alleles) of Darwinian
evolution picture, it seems that, by just looking at the re-
sults, we can not tell which one must have been the mech-
anism for the evolution!

There is growing concern about the effects of habi-
tat fragmentation in the survival of a species [11]. Small,
isolated forest fragments lose species–we have many ex-
amples in the case of fast deforestation worldwide [12].
Some species were lost within a few years of their isola-
tion from the once-continuous forest [13]. Oscillations in
the number of population of one “species” are observed in
the case of epidemics, as well as ecology. Throughout the
past century we have observed changes in patterns of epi-
demics [14]. For some diseases, the major transitions have
been between regular cycles and irregular epidemics, and
from regionally synchronized oscillations to complex, spa-
tially incoherent epidemics. Sinervo et al. [5,15] observed
spatio-temporal oscillations in the number of lizards (male
and female) that employ different mating strategies.

Many population ecologists then conclude that a very
important issue is the synchrony of population dynam-
ics in different habitat patches [16–20]. If the popula-
tion of a certain species goes extinct in one patch while
it still survives in other patches, then the hope is that
what is known as “rescue effect” can prevent global
extinction [17]. Otherwise, the population ecologists say,
if there is synchrony of population dynamics between
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patches, the species is doomed to go extinct altogether.
In this framework, there have been many proposed strate-
gies for preservation, one of the most debated of which is
the construction of “conservation corridors” that would
make it possible for individuals to move along habitat
patches [21,22].

Considering that each habitat patch can be thought
of as one copy of our non-spatial ensemble, it seemed
reasonable to study the behaviour of the three-species
cyclic system in the presence of mutations or migration.
In the following section we introduce our model, and in
the next ones, we present the results of our calculations
and simulations.

2 The model

Consider a non-spatial (well-stirred) system in which three
species A, B, C are competing in a way described by the
reactions: A+B → 2B at a rate AB/N , B+C → 2C, C+
A → 2A at corresponding rates. Add to it the reactions:
A → B at rate µA, A → C at rate µA, B → A at rate µB,
B → C at rate µB, C → A at rate µC, and C → B
at rate µC, where µ is the probability of mutations per
individual particle in unit time.

The rate equations for this system will be:

dA

dt
=

AC

N
− AB

N
+ µB + µC − 2µA

dB

dt
=

BA

N
− BC

N
+ µA + µC − 2µB (1)

dC

dt
=

CB

N
− CA

N
+ µA + µB − 2µC

with A+B+C = N = const. If the neutral drift system is
considered instead, i.e. when A+B → 2A or 2B with equal
probability (and similarly for the two other reactions), the
rate equations will only contain the terms that depend
on µ, and the first two terms will be absent.

In another version, mutations are replaced by migra-
tion into and out of the “island”. In other words, the
following migrations are happening: A out at rate 3µA,
B out at rate 3µB, C out at rate 3µC, A, B, or C in at
constant rate µ ·N , where N is the system size (to make it
comparable to the rate of leaving the island. This would
correspond to the average number of individuals in other
patches, which are the source of our “immigrants”.) The
rate equations will be the same as those for the system
with mutations. The above equations have a fixed point
at A = B = C = N/3, and it is a stable solution.

However, the rate equations are just a “mean field”
approximation; they only describe the behaviour of the
average values of the individual populations. In the real
world, the system is subject to stochastic noise due to
birth and death processes (intrinsic noise), which we take
to be Poisson-distributed. The random nature of these
processes need be taken into consideration, if we want to
get the correct picture of the evolution of the system. For
that we ought to write the master equation, and then try
to somehow expand it, obtaining a Fokker-Planck equa-
tion, and eventually solve it. The two most commonly

used expansions of the master equation are the Kramers-
Moyal expansion, which is essentially a Taylor expan-
sion in powers of system size N , and the Ω-expansion
of van Kampen [23] which is an expansion in powers
of

√
N . The first method produces a nonlinear Fokker-

Planck equation. The second method is quite systematic,
and yields satisfactory results when the system has a sin-
gle stable point, as the rate equations suggest is the case
with the present model. In the absence of this stable so-
lution, the task becomes very difficult [10].

Using the “shift” operators notation:

εAf(A, B, C) = f(A + 1, B, C)

ε−1
A f(A, B, C) = f(A − 1, B, C)

the master equation for the cyclic competition system with
mutations reads:

∂P (A, B, C, t)
∂t

=
{ 1

N

[
(εCε−1

A − 1)AC + (εAε−1
B − 1)AB

+ (εBε−1
C − 1)BC

]
+ µ

[
(εAε−1

B + εAε−1
C − 2)A

+ (εBε−1
C + εBε−1

A − 2)B + (εCε−1
A + εCε−1

B − 2)C
]}

× P (A, B, C, t) (2)

while that for the neutral drift system with mutations:

∂P (A, B, C, t)
∂t

=
{ 1

2N

[
(εCε−1

A + εAε−1
C − 2)AC

+ (εAε−1
B + εBε−1

A − 2)AB + (εBε−1
C + εCε−1

B − 2)BC
]

+ µ
[
(εAε−1

B + εAε−1
C − 2)A + (εBε−1

C + εBε−1
A − 2)B

+ (εCε−1
A + εCε−1

B − 2)C
]}

P (A, B, C, t) (3)

and that for the cyclic system with migrations:

∂P (A, B, C, t)
∂t

=
{ 1

N

[
(εCε−1

A − 1)AC + (εAε−1
B − 1)AB

+ (εBε−1
C − 1)BC

]
+ 3µ

[
(εA − 1)A + (εB − 1)B + (εC − 1)C

+
N

3
(ε−1

A + ε−1
B + ε−1

C − 3)
]}

P (A, B, C, t). (4)

3 The “fixation” regime

In a previous work [10] we studied the cyclic competi-
tion and neutral genetic drift systems in absence of mu-
tations. In the mean-field approximation (rate equations)
the cyclic system has an infinity of neutrally stable so-
lutions: any trajectory that conserves the integral H =
ABC/N3 is a stable trajectory of the system. On the
other hand, the neutral drift system has an infinity of neu-
trally stable points: any state of the system is stable in the
mean-field picture. The story is different, when stochastic
birth-and-death processes are taken into account: then the
individual population distribution drifts, until one of the
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Fig. 1. The time series for the number of C species in the “fix-
ation” regime (here µ = 0.4×10−3, and system size N = 300).

species, and then another one, go extinct. In other words,
there is fixation of the population to one of the varieties,
and the product H = ABC/N3 becomes zero. The sur-
vival probability versus time (in units of N) plot exhibits
exponential decay with slope −3, which was verified by nu-
merically solving the corresponding Fokker-Planck equa-
tion. This equation was obtained from a Kramers-Moyal
expansion, since the infinite multiplicity of stable solutions
(points or limit cycles) makes the van Kampen method
impractical to apply. The first extinction time scales with
the total population size N . This behaviour is the same for
both the cyclic competition and the neutral drift models,
the second one behaving as an “adiabatic approximation”
to the first one. For both models, the probability distribu-
tion function becomes uniform within a short time, i.e. any
point inside the triangle that represents the phase space
of the system is equally probable.

When µ is small (the meaning of small will become
clear in Sect. 5) the system with mutations/migrations is
in the “fixation” regime, in which the results of our previ-
ous study [10] are applicable qualitatively. In that regime,
the stochastic processes push the system towards the (ab-
sorbing) boundary, in which at least one of the species
has met extinction. This was verified by computer simula-
tions of the master equations (2, 3, 4). These simulations
started with equal individual populations of A, B, C, (i.e.
the centre). We generated times for the next possible reac-
tion event with exponential distribution as − ln(rn)

rate , where
the rate of the cyclic/neutral or mutations/migrations as
in the master equations above (2, 3, 4) is substituted.
(Here rn is a random variable with uniform distribution
in [0, 1]. This way we get Poisson distribution for the event
times, i.e. really independent events [24].) The reaction
which occurs first is then picked and the system is updated
accordingly. The process is repeated for a large number of
events.

We observed a “fixation” regime, in which one of the
populations, and then the next one, go to zero quite
fast. In this regime, the number of individual populations
oscillates with an amplitude that drifts with time. The
main reaction is then the cyclic one, and there are only

Fig. 2. Dependence of the exponent of the decay of the survival
probability on the mutation rate in the “extinction” regime for
system size N = 150.

occasional mutations/migrations, which are not frequent
enough to prevent fixation. In other words, the system is
experiencing “forces” due to fluctuations, and “forces” due
to mutations (migrations). The fluctuations are pushing
the system toward the boundary, while the mutations
(migrations) push toward the centre. For small muta-
tion/migration rate the “fluctuation-generated forces” are
stronger. Figure 1 shows the variation with time of the
population of C’s for a realisation of the system in the
“extinction” regime. Occasionally, an individual of the
competing species (the one next in the “food chain”) is
introduced in the system by mutations (or migrations),
and then it either causes an occasional spike in the time
series (like the one we see in Fig. 1 at 25 < t < 30, or it
“eats up” the old species completely and replaces it in the
system (which is what happens between t = 35 and t = 40
in our plot).

We investigated the behaviour of the probability dis-
tribution for the first crossing of the boundary, i.e. when
one of the populations becomes zero for the first time, as
the mutation/migration rate increases. For that we ran
ten thousand copies of the system for each value of the
mutation rate. The survival probability (as defined above)
was plotted vs. time. In the “fixation regime” the decay
is still exponential, but the exponent varies with the mu-
tation/migration rate, getting close to zero as the system
approaches criticality. Figure 2 shows a plot of the expo-
nent as a function of mutation probability µ for system
size N = 150 and N = 300.

4 The “diversity” regime

If only mutations (migrations) are present, the system
remains near the centre point (A = B = C = N/3),
and the order parameter remains considerably above zero;
in other words, all three species are present in the sys-
tem. One can occasionally observe temporary extinctions,
but this happens very seldom, and for very long times;
when the system size is very large, it almost never hap-
pens. Since the boundary is not absorbing, occasional
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mutations/migrations will return the system to the state
with maximal symmetry (biodiversity) where all three
varieties coexist. When both the cyclic/neutral drift mech-
anism and mutations (migrations) are present, and the µ
is above critical, the mutations manage to keep the sys-
tem maximally disordered, since they are stronger than
the fluctuations (which, as we saw, try to drive the sys-
tem toward the boundary, i.e. fixation, and keep it there).
Compared to the situation with no/low mutations (migra-
tions), where the boundary is (practically) absorbing, and
the final state of the system is a “pure” one (with only
one of the species present), the mutation/migration rate
acts then as a “temperature”.

Work has been done on the two allele almost neu-
tral drift model with mutations [25]. The almost neutral
model with mutations, preserving the total number of in-
dividuals, has only one degree of freedom, and allows one
to derive an “effective potential” from the Fokker-Planck
equation, obtained by a Kramers-Moyal expansion of the
master equation. For small mutation probabilities, such
that 2µN � 1, there is extinction of one species and fixa-
tion. The effective potential is symmetric around the cen-
tre (where both species are in equal numbers) and the
branches of the effective potential are down. This allows
for the system to quickly slip into the state where only one
of the species is present. Otherwise, both species coexist
forever in the high mutation regime, i.e. when 2µN � 1.
In that regime, the effective potential is symmetric around
the centre point, but with branches upwards, which means
that the centre point is a minimum potential point. The
system then remains in the vicinity of that point for very
long times. The effective potential “flips” from “branches
up” to “branches down” at the point where 2µN = 1.
The transition is first-order, and critical behaviour is ob-
served. The system behaves similarly when migrations are
present, instead of mutations. One aspect of migrations in
a four-species system has been treated recently by Togashi
and Kaneko [26].

Since the rate equations have a stable solution, we em-
ploy the van Kampen expansion [23]. The idea of this
expansion is to split the variables of the problem into a
non-fluctuating part, and a fluctuating one, i.e. deal sepa-
rately with the mean-field solutions and the fluctuations.
In this approach, the numbers of the individual popula-
tions would be written as:

A = Nφ1 +
√

Nx1

B = Nφ2 +
√

Nx2 (5)

C = Nφ3 +
√

Nx3.

Here the φi are the concentrations of A, B, and C species
respectively (which only depend on time), and the xi are
the fluctuations (proportional to the square root of system
size). The system size (total population) N is conserved
for the system with mutations, but not for that with mi-
grations. This conservation rule will cause trouble in the
case of the system with mutations, and will require special
attention. Using the van Kampen Ansatz, the probability
distribution P (A, B, C, t) is transformed into Π({xi}, t),

and the following relations are true:

Π = N3/2P
(
N
{
φi +

√
Nxi

}
, t
)

∂P

∂t
=

1
N3/2

∂Π

∂t
− 1

N

∑ dφi

dt

∂Π

∂xi

and

εi = 1 +
1√
N

∂

∂xi
+

1
2N

∂2

∂xi
2

+ . . .

εi
−1 = 1 − 1√

N

∂

∂xi
+

1
2N

∂2

∂xi
2

+ . . . (6)

Next we substitute everything into the master equa-
tion, leave only the term ∂Π/∂t in the left hand side,
and group the right hand side terms according to powers
of

√
N . The first term is of order N1/2, and it must be

equal to zero, for an expansion in terms of N1/2 to make
sense. That term for e.g. the cyclic model is:

∑ ∂Π

∂xi

[
dφi

dt
+ φiφi+1 − φiφi+2

+ µ(2φ1 − φi+1 − φi+2)

]
= 0, (7)

which reproduces the rate equations in terms of the con-
centrations φi, with steady state solution φi = 1/3. Simi-
larly, we get the rate equations for the other models.

The terms of order N0 give a linear Fokker-Planck
equation of the form:

∂Π

∂t
=
∑[

−Aik
∂

∂xi
(xkΠ) +

1
2
Bik

∂2Π

∂xi∂xk

]
· (8)

4.1 The system with migrations

We are going to solve the system with migrations first,
since the absence of the conservation of total population N
makes this system easier to deal with. For simplicity, let us
limit our attention to fluctuations around the steady state
φi = 1/3. The A-matrix for the system with migrations is:

 −3µ −1/3 1/3
1/3 −3µ −1/3
−1/3 1/3 −3µ




and the B-matrix:
2µ + 2/9 −1/9 −1/9

−1/9 2µ + 2/9 −1/9
−1/9 −1/9 2µ + 2/9


 .

These equations are linear, and the coefficients depend on
time through φi. This approximation is otherwise known
as “linear noise approximation”. The solution is known
to be a Gaussian; the problem represents itself as an
Ornstein-Uhlenbeck process. For our purposes, it suffices
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Fig. 3. The variance and correlations of the fluctuations vs.
migration probability per particle for system size N = 300,
cyclic system. The same behaviour is observed for the system
with mutations.

to determine the first and second moments of the fluc-
tuations. Following van Kampen [23], we can multiply
the Fokker-Planck equation by xi and integrate by parts
to get:

d〈xi〉
dt

=
∑

j

Aij〈xj〉. (9)

The eigenvalues of the A matrix are of the form −3µ,
−3µ± i/

√
3. The negativity of the eigenvalues guarantees

the stability of the zero solutions to the first moments
equations. Hence, the average of the fluctuations decays
to zero and remains zero. The equations for the second
moments can be obtained similarly:

d〈xixj〉
dt

=
∑

k

Aik〈xkxj〉 +
∑

k

Ajk〈xixk〉 + Bij . (10)

By symmetry, in the steady state all the diagonal
terms 〈x2

i 〉 are equal, as well as off-diagonal terms (correla-
tions) 〈xixj〉. They depend on the migration probability µ
alone. The steady state solutions are:

〈x2
i 〉 =

9µ + 1
27µ

(11)

〈xixj〉 = − 1
54µ

·

The diagonal terms coincide with the variance, since the
〈xi〉 = 0. These fluctuations were measured “experimen-
tally”, i.e. calculated from the results of the simulations.
We simulated 1000 copies of the system (size N = 300)
at different mutation rates, and calculated the mean and
variance of the fluctuations, as well as correlations. The
results of those simulations are shown in Figure 3 for the
system with migrations. They agree with the calculated
values.

4.2 The system with mutations

In the case of the system with mutations, the total popula-
tion N is a conserved quantity; this imposes restrictions on

allowed fluctuations. We avoid this problem by excluding
one of the variables. For that, we transform the problem
into one with two variables, which can be done by putting:

A

N
=

1
3
− 1√

N

(√
3

2
x +

y

2

)

B

N
=

1
3

+
1√
N

(√
3

2
x − y

2

)
(12)

C

N
=

1
3

+
y√
N

·

This corresponds to transforming to Cartesian coordi-
nates with the origin placed at the geometrical centre of
the equilateral triangle, which constitutes the phase space
of our system [10].

The Fokker-Planck equation for the cyclic competition
system becomes:

∂Π

∂t
=

∂

∂x

(
y√
3

+ 3µx

)
Π − ∂

∂y

(
x√
3
− 3µy

)
Π

+
1 + 6µ

9

(
∂2

∂x2
+

∂2

∂y2

)
Π. (13)

The A-matrix has the form:( −3µ −1/
√

3
1/

√
3 −3µ

)

with eigenvalues −3µ± i/
√

3. The mean value of the fluc-
tuations decays to zero with an oscillating behaviour, and
remains zero. The B-matrix is diagonal, with both diag-
onal elements equal to 2

9 (1 + 6µ). The equations for the
second moments become:

d〈x2〉
dt

= −6µ〈x2〉 − 2√
3
〈xy〉 +

2
9
(1 + 6µ)

d〈xy〉
dt

=
2√
3
〈x2〉 − 6µ〈xy〉 − 2√

3
〈y2〉 (14)

d〈y2〉
dt

=
2√
3
〈xy〉 − 6µ〈y2〉 +

2
9
(1 + 6µ)

with solutions that tend to

〈x2〉 = 〈y2〉 =
1 + 6µ

27µ
, 〈xy〉 = 0 (15)

as t → ∞. These solutions need to be transformed back
in terms of 〈x2

i 〉 and 〈xixj〉, and the results are:

〈x2
i 〉 =

1 + 6µ

27µ
(16)

〈xixj〉 = −1 + 6µ

54µ
·

For the neutral drift case, the Fokker-Planck equation be-
comes:

∂Π

∂t
=

∂

∂x
(6µxΠ) +

∂

∂y
(6µyΠ)

+
2(1 + 6µ)

9

(
∂2

∂x2
+

∂2

∂y2

)
Π (17)
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Fig. 4. Variation of critical mutation and migration probabil-
ity per particle with system size.

with the same steady state distributions as the cyclic com-
petition model.

5 The transition region

The qualitative change in the behaviour of the system,
when the value of the parameter µ is varied, speaks of
the presence of a phase transition. The survival proba-
bility decays exponentially with time in the “fixation”
regime, and the exponent goes down as the mutation prob-
ability increases, as shown in Figure 2. This speaks of a
symmetry-breaking transition as the mutation probability
goes through the critical value.

When the mutation/migration probabilities per par-
ticle approach zero, the leading term in the variances
of the concentrations of individual populations is of or-
der 1/27Nµ, and it becomes of the same order of magni-
tude as the macroscopic concentrations, when 3µN ∝ 1.
This gives us the critical mutation/migration probabil-
ity dependence on the system size N . The critical µ was
verified to be the same for both models with mutations
present, and the critical µ for the system with migra-
tions from the simulations is very close to that for the
systems with mutations, which supports the calculations
above. Figure 4 shows plots of critical µ vs. N , as well
as a line of slope 1/N for comparison. To further verify
this result, we performed a Kramers-Moyal expansion the
models with mutations and migrations, in which µ was
posed as µ0/N . Numerical solution of the resulting non-
linear Fokker-Planck equations gave the equation for the
eigenvalue (exponent of decay): λ = 9µ0 − 3, where λ is
the eigenvalue. At criticality, λ = 0, which yields µ0 = 1/3
or µ = 1/3N [27]. This is in excellent agreement with the
results obtained from the analysis above, as well as the
computer simulations. It is worth noting that the neutral
system essentially behaves like the cyclic one.

The probability that the system has never crossed the
boundary, (i.e. none of the populations has ever become

Fig. 5. Cumulative survival probability vs. time (in units of N)
just below, just above, and at the critical point, cyclic system
with mutations, system size N = 210.

zero), when the system is in the transition regime, still
decays to zero, but not exponentially any more. The tran-
sition is critical; however, transitions in nonequilibrium
(steady-state) systems are different from the thermody-
namic phase transitions. If the system size were infinite,
one would introduce one infected individual (mutant) and
measure the probability of survival of infection/mutation
as time goes to infinity. This would constitute the or-
der parameter of our system in the thermodynamic limit.
However, our systems are finite, and for finite N the
quantity which exhibits critical behaviour is the first pas-
sage time for crossing the boundary1.

In Figure 5 we show plots of the first extinction times
(with their cumulative probability in the y-axis) just be-
low, just above, and at the critical µ (system size N =
210). (It is worth mentioning that we ran a statistics
of 10000 copies of the system, but we are showing only 1
in 20 points in that plot, to prevent figures from becom-
ing cluttered.) The power-law decay behaviour was used
as a criterion for determining the critical point. The plot
in Figure 5 shows clearly that the survival probability de-
cays as a power law at the critical point. However, once
the system is above the critical point, there is considerable
probability for the system to have never “gone dead”, even
at very long times. The extinction times at the critical
point scale with the system size. The power-law exponent
is −1.03± 0.04 for cyclic competition model, −0.99± 0.03
for the neutral model with mutations; and −1.05 ± 0.06
for the cyclic system with migrations. This exponent close

1 Our model differs from the chemical reactions models: in
them the onset of the cyclic behaviour is a Hopf bifurcation,
in which a stable focus changes into a limit cycle [28]. In our
model the limit cycle is absent. The chemical reactions mod-
els are dissipative even in the mean-field approximation, while
our system has a centre in the mean field treatment. In those
models the fluctuations become important only when the sys-
tem is in the vicinity of the Hopf bifurcation, ours is entirely
fluctuations-driven below the critical transition point.
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to 1, found in simulations is compatible with the one ex-
pected from branching processes [29], as well as the one
obtained for the two-species Kimura-Weiss model [25].

6 Conclusions

We have considered an ABC model with cyclic competi-
tion/neutral drift and mutations (migrations) at a con-
stant probability. The system exhibits a critical transition
from a “fixation” regime to one in which biodiversity is
preserved over long time. In the “fixation” regime, the
number of the A, B, C species oscillates with an ampli-
tude that drifts with time, until one of the species (and
then the second one) goes extinct, i.e. the order parame-
ter, defined as the product of ABC /N3 goes to zero, and
remains zero, except for occasional “bursts”. In the “di-
versity” regime, the number of the A, B, C varieties fluc-
tuates around the centre point, and there are rare extinc-
tions, but the order parameter remains nonzero almost
always. The survival probability decays exponentially be-
low the transition point, but the exponent decreases as the
mutation (migration) probability per particle increases,
until it becomes zero at the critical point. The critical
mutation/migration probability depends on system size
as N−1, and the models have the same power-law expo-
nent: −1. There is no difference in the behaviours of the
neutral system and the cyclic system. Also, there is no
qualitative difference between the system with mutations
and that with migrations.

These results address the concern about the effects of
habitat fragmentation in the survival of the species [11].
If the population of a certain species goes extinct in one
patch (e.g. a herd, school, swarm) while it still survives in
other patches, then it is hoped that the “rescue effect” can
prevent global extinction [16–18]. Otherwise, the species is
doomed to go extinct altogether. Our results suggest that
the number of mutants/migrants necessary to preserve di-
versity is independent of system size, while in most realis-
tic situations the number of mutations that happen would
be proportional to system size. On the other hand, if one
has in mind epidemiological systems, the important factor
is to reduce migration probabilities below critical, which
is exactly the purpose quarantines serve. Let’s recall here
the revival of SARS epidemics in Toronto, once the guard
was let down, i.e. infected individuals were allowed to mi-
grate from one community on to others. In that case, a
large system size may be a disadvantage. It takes only one
bad apple...

In lattice models [30,31] small amounts of migration
bring about “phase synchronization”. Peak population
abundances, however, are observed to be largely uncor-
related. Blasius et al. [17] use a Langevin type system of
equations to introduce noise in the three-species spatially
structured model, and obtain complex chaotic travelling-
wave structures.

This work on three-species ecological or epidemiologi-
cal systems relates to autocatalytic systems with a loop-
like structure [26,32]. Methods of analysis employed in
this paper can be expanded to the loop-like autocatalytic

systems. We have work in progress regarding the four- or
more-species autocatalytic loops [33].
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